
CPS221 Lecture: Processes and Memory Management

last revised 9/5/12
Objectives

1. To introduce fundamental concepts concerning processes: state, pid, PCB
2. To introduce virtual memory
3. To introduce mechanisms for inter-process communication

 Materials:

1. Ability to demonstrate Unix commands on Mac and Linux
2. pipedoc.txt and pipedict.txt examples for pipeline demo + file with command

to cut and paste plus shell script version
3. Projectable version of Figure 6.4 from Hailperin

I. Introduction

A. Recall that earlier in the course we introduced the notion of a process
as the fundamental abstraction in the realm of operating systems.

1. Recall that a process is a PROGRAM IN EXECUTION.

2. At any given time, the status of a process includes

a) Information about resources that may be allocated to the
process (e.g. open files)

b) One or more threads of execution

c) A region of memory holding its code and data.

3. Recall also that, historically, processes had only one thread of
execution, so that there was typically no distinction drawn between
a process and its (unique) thread of execution. Earlier in the
course, we focussed on the notion of threads of execution. Now
we want to come back to the notion of a process, and in particular
to the matter of managing a process’s memory.

1

B. Though we will use the term “process”, other terms have been and are
still used for the same concept, including “job” and “task” (though
each term is also sometimes used to mean something different.)

C. PIDs and PCBs

1. To facilitate references to the process, operating systems typically
assign each process a unique process ID (generally called a PID) at the
time it is created. Typically, this is an integer, which starts at 1 when
the system is first started and increases continually as it is running, so
that no two processes ever have the same pid. (If a 64-bit integer is
used for the pid, then if one process is created every microsecond the
set of possible pids will run out in about a million years!)

2. The operating system uses a data structure called a process control
block (PCB) to record vital information about a process.

a) Its PID

b) Resources such as memory and files that are assigned to it.

Many systems also incorporate some provision for limiting the
quantity of resources any once process can be given

SHOW man page for getrlimit

c) In systems where a process could only have a single thread of
execution, information about the thread might also be stored in
the PCB instead of in a separate PCB.

D. One of the most important sets of services an operating system
provides is those related to the management of processes - including:

1. Process creation. Most systems allow a process that is running to
create a new process.

2

a) The creator process is called the parent and the new process is
called a child. (By repeated use of the create process service, a
parent could create multiple children, of course.)

b) Various aspects of the relationship between a parent and child
are handled differently by different systems:

(1)Memory image:

(a) Unix: When a child process is created by the fork() system
call, it shares its parent's text and inherits a copy of all its
parents data (data, heap, and stack). The child typically
acquires its own, separate text by using the exec() system call.

As a consequence, following a fork() both the parent and the
child are executing the exact same code, beginning with the
return from the call to fork(). The only difference is in the
value returned from fork()

i) In the parent, it is the PID of the newly-created child.

ii) In the child, it is 0.

Code like the following is typical in shells:

char * programToRun;
int childPID;
...
childPID = fork();
if (childPID == 0)
 // Begin running programToRun
else
 // wait for process whose PID is childPID to complete

(b)Windows: The CreateProcess() system call specifies -
among other things - the name of the application that is
to be run by the child.

3

(2)Resources: As we have seen, most systems impose some
upper limits on how large a quantity of various system
resources a process can claim (e.g. memory, open files etc.)
On some systems, the resources used by a child are counted
against its parents quota; on others each child has its own
quota.

(3)After new process creation, both the parent and child
continue to execute in parallel. However, most systems
provide a means by which the parent can wait until the child
completes before proceeding further.

(4)Possibility of the child living on after the parent terminates.:
On many systems termination of a parent process
automatically causes its children to terminate as well.

DEMO: ssh to Linux, ps -xl. Discuss the following

COMMAND
UID:
PID: pid
PPID: (pid of parent)
STAT: S = waiting on an event (completion of child)
	
 R = ready or running
	
 (s = session leader, + = foreground process)

2. Process termination

a) A process may terminate itself by invoking a suitable system
service.

b) On many systems, a parent process may also terminate one of
its children through a system service call.

c) Many systems provide a mechanism whereby a process
belonging to a suitably-privileged user can terminate someone
else’s process as well.

4

3. Resource allocation. While CPU time is allocated automatically to
a process (though there may be a provision for imposing a limit),
other resources are typically allocated to a process upon request.

a) When a process is first created, an initial allocation of memory
is given to it, but operating systems typically provide a system
service that allows more to be requested as the program runs.

b) The act of opening a file is actually a form of resource
allocation.

etc

E. Multiprogrammed operating systems were first developed to allow
multiple independent processes, but it soon became apparent that
there were benefits to solving certain kinds of problems by the use of
two or more cooperating processes working together on a common
task. (An application of the principle of modularity that pervades
computer science).

1. We have already seen how this works out in terms of separate
threads in a single process, but the idea of cooperating processes
actually precedes this concept, and may involve different
programs.

2. One approach that arose in Unix is quite limited though often very
useful - the use of something called a pipeline.

3. Consider the following example: We want to spell-check a
document that uses a non-standard vocabulary (e.g. perhaps it’s in
a language that our regular spell checker does not recognize.) We
have available a dictionary file for our vocabulary; what we want
to do is to identify words in our document that do not appear in our
dictionary.

5

For simplicity, assume that our document and dictionary are both
ordinary text files. Also assume that writing a special-purpose
program does not seem like a good option.

Here’s an example (the language used is obbish! The dictionary
has been made fairly minimal since this is only an illustration!)

PROJECT pipedoc.txt, pipedict.txt

We could proceed as follows.

a) Unix includes a transliterator utility called tr which performs
transliteration. It is fairly easy to use this to take a text
document and change the case of all letters to lowercase.

DEMO: tr A-Z a-z < pipedoc.txt > tmp1.txt

b) This same program can be used a second time to replace a
sequence of characters other than those that can appear inside
words with a single newline. If we apply this to the output
produced by the first use of tr, we ge a file containing each
word, all lowercase, on a separate line.

DEMO tr -cs a-z '\012' < tmp1.txt > tmp2.txt

c) Another utility called sort can sort a file into alphabetical order,
with an option to squeeze out duplicates.

DEMO: sort -u < tmp2.txt > tmp3.txt

d) Finally, the comm utility can be used to compare this file to the
dictionary, reporting any lines that appear in the word list from
the document but not in the dictionary (which are potentially
misspellings).

DEMO: comm -23 tmp3.txt pipedict.txt

e) Of course, a couple of problems with this approach is it
involves four distinct steps and litters the directory with three
temporary files that should be deleted (but may not be!)

6

4. An alternative approach is the use of a Unix pipeline. The Unix shells
allow the user to specify several commands separated by ‘|’. Each
command is run in a separate process, with the standard output of the first
process connected to the standard input of the second, the standard output
of the second connected to the third ...

DEMO: tr A-Z a-z < pipedoc.txt | tr -cs a-z '\012' |
sort -u | comm -23 - pipedict.txt

5. Actually, if this command were to be used frequently, it would be
possible to turn it into an executable shell script by putting it in a
file with file type .sh and making it executable.

PROJECT, DEMO pipescript.sh

II. Memory Management

A. One of the most important resources an operating system manages on
behalf of processes is memory.

B. With the advent of stacked job batch systems, it became necessary to
partition memory into distinct monitor and a user program regions.
With the advent of multiprogramming, the number of regions needed
grew - one for the operating system, plus separate regions for each
process.

1. At this point, we need to digress a bit to talk about how memory
addresses are handled. (We discuss this in much more detail in
CPS311).

a) Memory is composed of a series of distinct locations, each of
which has its own numeric address. For example, a 1 GB memory
would consist of 230 bytes, each with an address lying in the range
0..230 - 1.

7

b) Each variable appearing in a program is stored at some location
in memory, known as its address.

If the variable is too big to fit in one location, it uses a series of
consecutive locations, with the address of the first of these
locations serving as the address of the variable.

Example: An integer variable typically requires 4 bytes of
space, So a global variable declaration like
int x;

would result in the variable x being assigned four consecutive
bytes in memory. If the variable is assigned to locations
1000-1003, then it would be referred to by the address 1000.

c) When a program needs to reference a variable, it specifies the
address of the memory location where that variable resides -
e.g. if the variable x is stored at locations 1000-1003, then
x++;

might be compiled into a machine language instruction like

Add 1 to the integer at memory address 1000

d) A similar situation holds when code needs to refer to other code
- e.g. when code needs to call a procedure. To do so, it must
specify the address in memory of the location where the
procedure resides - e.g. if the procedure foo() begins at memory
location 2000, then

foo();

might be compiled into a machine language instruction like

Call the procedure beginning at memory address
2000

8

2. Now we face an interesting problem: when we have several
processes resident in memory at the same time time, how do we
ensure that each uses a different set of memory addresses for its
variables and code? (Consider the consequences that would follow
if this were not the case!)

a) One solution that was used in the early days of
multiprogramming was to require that each program be written
to use a different set of addresses.

Of course, this is only possible if we knew ahead of time that a
fixed set of programs would be running at the same time; it
would be useless in the case where arbitrary programs can be
run at any time - even two different processes running the same
program.

b) Another solution that was used was to modify the addresses
appearing in a program when it was loaded so that it would use
addresses not currently in use.

Though workable, this is cumbersome.

C. The most commonly used approach is for the hardware to incorporate
a component that performs address mapping (commonly called a
memory management unit.)

PROJECT Figure 6.4 from Hailperin

1. Programs are compiled to use virtual addresses without having to
be concerned about what other programs are running. (In fact,
usually a standard set of conventions are used for assigning
addresses when a program is compiled, so all programs end up
being compiled to use the same addresses.)

2. But when a program is running as a process, each virtual code or
data address it emits is translated by the MMU into a distinct set of
physical addresses that it alone is using.

9

3. For this to work, the MMU must use a distinct set of mappings for
each process. Typically, this is managed by a table that the
operating system sets up.

A consequence of this is that additional overhead is involved for a
context switch between threads in distinct processes, as opposed to
threads in the same process, since memory management
information must also be modified. (This is typically minimized
by having the mapping tables themselves reside in memory, with
only the CPU register that contains the starting address of the
tables to use needing to be changed during a context switch.)

D. A byproduct of using memory management is that it becomes possible
to protect the operating system from user processes, and user
processes from one another, by simply ensuring that different
mappings are used for each.

1. If no virtual address in a process maps to a given physical address,
then there is no way that the process can access that location.)

2. This can be made more fine-grained by extending the mapping
capabilities to also specify whether a given region of physical
memory can be read and written, or is read only (so the process
can look at it but cannot change it.)

E. Though memory mapping was originally developed to solve the
problem of ensuring that distinct processes reference distinct locations
in physical memory, it can be used for other things as well.

1. Rather than having an entire program in memory, it is possible to
use disk as an extension of main memory by setting up the
mapping tables for certain virtual addresses to indicate that they
are referencing a location on disk, rather than main memory.

a) Of course, accessing information on disk is much slower than
accessing information in main memory - it takes on the order of

10

100,000 times longer. (So strategies are used to ensure that the
code and data that is currently being used is all resident in
memory.)

b) This does, however, allow a system to run programs whose sum
total memory requirements exceed the available memory.

c) It was actually this usage that gave rise to the term virtual
memory.

2. It is also possible to have library code (e.g. Windows DLLs) that is
available to all processes on a system. If a process needs to use
such a library, the operating system sets up its mapping tables to
specify that certain virtual addresses in the process are mapped to
the physical location where the library resides. (Typically, a read-
only mapping is specified so that a process cannot modify a library
other processes need to use!)

III.Inter-Process Communication

A. We talked earlier about the notion of having two or more processes
cooperate to fulfill a common task, and we at one mechanism for
doing this: pipelines. However, pipelines are primarily useful for the
special case where we can string together existing programs to
accomplish our task on a single system. Often, our task calls for
special software and/or must be done using multiple systems. This, of
course, raises the question of how two or more processes can share
information in a general way.

B. One approach is shared memory.

1. In the standard multiprogramming model, each process has its own
memory which is separate from that of all other processes.

11

2. Shared memory allows two processes to share some amount of
memory in common (generally a subset of the memory allocated to
each).

\
a) One process (the “owner” of the memory) executes a system

service that specifies that some region in its memory space is to
be made available for sharing.

b) The other process (or processes) then “attach” to this shared
memory.

c) The operating system manages this by having the mapping
tables used for both processes map certain virtual addresses in
the two processes to the same physical locations in memory.

3. Operating systems that support shared memory (and not all do)
may allow the owner process to make shared memory available for
other processes to read but not write, or may allow both reading
and writing by other processes.

C. A second approach to inter-process communication is message
passing.

1. The operating system supports two services - a send service that
allows one process to send a message to another, and a receive
service that allows a process to receive a message from another.

a) The send service often completes immediately - the OS holds
the message until it can be delivered.

b) The receive service typically waits until a message arrives.

c) From the operating system’s standpoint, the message is just a
series of bytes - the sending and receiving processes must put
their own interpretation on it.

12

2.A message passing facility in the operating system is often used as
the foundation for a strategy known as “Remote Procedure Call”.

a) We will briefly discuss an object-oriented version of this. In
brief, a process is allowed to access methods of two different
kinds of objects:

(1)Local objects, residing in its own memory space.

(2)Remote objects, residing in the memory space of another
process, wh may the located on the same machine, or may
be truly remote.

b) There is a certain amount of overhead involved in setting up an
RPC connection. However, once this is done, the code needed
to invoke a method of a remote object is essentially the same as
the code needed to invoke a method of a local object.

(1)When a method of a remote object is invoked, the RPC
mechanism marshalls its parameters into a message, which
is sent to the “remote” machine. Meanwhile, the process
that invokes the message is placed into a waiting state until a
reply message is received.

(2)When the “remote” machine receives the message, it
unmarshals the parameters, invokes the message, and then
marshals the method’s result into another message, which it
sends back to the original machine. (If the method is void, a
return message is still sent, but without any information.)

(3)When the reply message arrives, the result is unmarshalled
and returned to the calling process in just the way that it
would have gotten a result back from a method on a local
object.

13

c) We will discuss RPC more thoroughly in the networks section
of the course, since it is most often used when the processes
involved are on different machines.

3. Once again, not all operating systems provide a message-passing
facility - though most do (even those supporting shared memory as
well).

D. How do we compare these last two approaches to inter-process
communication?

ASK

1. Shared memory is much faster than message passing, because
shared memory only involves operating system overhead for initial
setup, while message passing involves operating system overhead
for every operation.

2. However, shared memory is restricted to processes running on the
same machine. Message passing is easily extended to support
communication betweeen cooperating processes located at
different physical locations - the message is simply sent over a
network.

3. Shared memory also requires some mechanism for synchronizing
the two processes - while this is inherent in message passing.

4. Finally, shared memory adds significant complexity to the memory
management portion of the operating system.

E. In the case of threads within the same process, shared memory can
always be used, since they all share the same memory. However,
message passing can also be used, as we shall explore in lab. (The
motivation in this case has to do with avoiding the need for explicit
synchronization of access to shared memory.)

14

